MySQL's JSON path format
MySQL uses specific JSON path expression syntax to navigate and extract data from JSON documents
Basic structure
The JSON path in MySQL follows the following common format
$[Path Component]
Detailed explanation of path components
| Operator | Description | Example |
| ----------- | --------- | --------------------- |
| $ \| Root object \| $ |
| . or [] | Member access | $.name or $['name'] |
| [*] | Array Wildcards | $.items[*] |
| [n] | Array Index | $[0] |
| [m to n] | Array range | $[1 to 3] |
| ** | Recursive wildcard | $**.price |
1. Root object ($
)
-
$
Represents the entire JSON document
2. Member visits (.
or[]
)
- Point notation:
$.
- Bracket notation:
$['store']['book']
- Use bracket notation when the key name contains special characters or spaces
3. Array access
- All elements:
$[*]
or$.array[*]
- Specify the index:
$[0]
Count starts at 0 - scope:
$[1 to 3]
(MySQL 8.0.26+)
4. Wildcard
-
*
Match all members/elements at the current level -
**
Recursively searching all paths (MySQL 8.0.26+)
Special syntax elements
1. Filter expressions (MySQL 8.0.4+)
$.items[?(@.price > 10)]
-
?
Introduce filtering expressions -
@
Represents the current element
2. Path range (MySQL 8.0.26+)
$[1 to 3] // Element 1 to 3
$[last-1] // The penultimate element
$[last-2 to last] // The last three elements
Actual examples
Simple path
-- Extract scalar values
SELECT JSON_EXTRACT('{"name": "Zhang San", "age": 30}', '$.name');
-- Array element, output "b", note that it is in double quotes
SELECT JSON_EXTRACT('["a", "b", "c"]', '$[1]');
Complex paths
--Nested Objects
SELECT JSON_EXTRACT('{"store": {"book": {"title": "MySQL Guide"}}}', '$.');
-- Object array
SELECT JSON_EXTRACT('{"items": [{"id": 1}, {"id": 2}]}', '$.items[*].id');
Filter expressions
-- Find high-priced products
SELECT JSON_EXTRACT('{"items": [{"id": 1, "price": 5}, {"id": 2, "price": 15}]}',
'$..items[?(@.price > 10)].id');
Abbreviation operator
MySQL provides abbreviation for common operations
-
->
: equivalent toJSON_EXTRACT()
-
->>
: equivalent toJSON_UNQUOTE(JSON_EXTRACT())
--The following two writing methods are equivalent:
SELECT json_column->'$.name';
SELECT JSON_EXTRACT(json_column, '$.name');
-- The following two writing methods are equivalent (returning a string with quotes removed):
SELECT json_column->>'$.name';
SELECT JSON_UNQUOTE(JSON_EXTRACT(json_column, '$.name'));
Notice
- Path expressions are case sensitive
- Returns NULL if the non-existent path (no error will be reported)
-
**
Recursive operators may affect performance - Filter expressions support comparison operators:
=
、!=
、<
、>
wait
MySQL's JSON_TABLE function
All you know that the result obtained in this way is not a real row-column structure. The JSON_TABLE function introduced in MySQL 8.0 can convert JSON data into a relational table format and convert each element in the array into a row of data in the table.
Functions of JSON_TABLE
- Expand the JSON array into multi-line records
- Extract nested JSON object properties
- Convert semi-structured data into structured data
JSON_TABLE Usage
JSON_TABLE(
json_doc, -- field or value of type JSON
path_expression -- JSON path expression
COLUMNS( -- Column definition for new table
column_name column_type PATH json_path [on_empty] [on_error],
...
)
) [AS] alias
Parameter description
- json_doc: Can be a JSON string literal, or a JSON type column in a table
- path_expression: The path to the JSON array to be expanded
-
COLUMNS: Define the structure of the output column
-
column_name
: The generated column name -
column_type
: Data types (such as VARCHAR, INT, JSON, etc.) -
PATH
: Specify the data extraction path
-
- alias: The table alias that must be provided
Actual cases
Expand an array of integers into one column and multiple rows
SELECT *
FROM JSON_TABLE(
'[1, 2, 3]',
'$[*]' COLUMNS(
rowid FOR ORDINALITY,
value INT PATH '$'
)
) AS t;
Output
rowid | value
------+-------
1 | 1
2 | 2
3 | 3
Expand an array of objects into multiple columns and rows
SELECT *
FROM JSON_TABLE(
'[{"name":"Zhang San","age":25},{"name":"Li Si","age":30}]',
'$[*]' COLUMNS(
name VARCHAR(20) PATH '$.name',
age INT PATH '$.age',
adult VARCHAR(3) PATH '$.age' DEFAULT 'No' ON EMPTY
)
) AS t;
Output
name | age | adult
-----+-----+--------------------------------------------------------------------------------------------------------------------
Zhang San | 25 | No
Li Si | 30 | No
Expand in the data table
If JSON is a field in the table, you can usetable_1 CROSS JOIN JSON_TABLE(...)
Expand, for example, the field of a table v_video is a JSON field. You need to expand a member sequences in the result, and write it as SQL as follows
SELECT
,
e.match_id,
->>'$.id' AS json_id,
->>'$.sf' AS sf_value,
->>'$.ef' AS ef_value,
->>'$.ef' - ->>'$.sf'AS duration
FROM
v_video e
CROSS JOIN JSON_TABLE(
->'$.sequences',
'$[*]' COLUMNS (
tag JSON PATH '$'
)
) AS j ON e.match_id = 294
The above SQL is expanded through CROSS JOIN JSON_TABLE to expand the sequences array under each row field. Each array element becomes a new field tag. At this time, it is still a JSON, and then passes in SELECT.->>
Extract the values in it and get a completely expanded new table.
Advanced Usage
FOR ORDINALITY clause
Generate self-increased row number columns
COLUMNS(
id FOR ORDINALITY,
...
)
Nested path processing
COLUMNS(
NESTED PATH '$.nested_obj' COLUMNS(
sub_col1 INT PATH '$.prop1',
sub_col2 VARCHAR(10) PATH '$.prop2'
)
)
The above example can be rewritten as
SELECT
,
,
,
- AS duration
FROM
v_video e
CROSS JOIN
JSON_TABLE(
->'$.sequences',
'$[*]' COLUMNS (
id FOR ORDINALITY,
NESTED PATH '$' COLUMNS(
ef INT PATH '$.ef',
sf INT PATH '$.sf'
)
)
) AS j ON e.match_id = 294
The above SQL, byNESTED PATH ... COLUMNS(...)
Further expand a JSON element in the expanded array into multiple fields.
Error handling
COLUMNS(
ef INT PATH '$.ef' NULL ON EMPTY NULL ON ERROR,
sf INT PATH '$.sf' DEFAULT '0' ON EMPTY NULL ON ERROR
)
The format is
on_empty:
{NULL | DEFAULT json_string | ERROR} ON EMPTY
on_error:
{NULL | DEFAULT json_string | ERROR} ON ERROR
Things to note
- MySQL version is higher than 8.0
- The path expression must point to the JSON array, note thatArray
- Aliases must be specified for the result set
- Can be used in both the FROM clause and the JOIN clause
- In terms of performance, using JSON_TABLE for large data sets may be slow, creating function indexes for JSON columns can improve query performance