Location>code7788 >text

3D Gaussian 3D visual reconstruction

Popularity:79 ℃/2025-03-30 18:54:39

Paper materials

  • paper/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf
    • Information website/fungraph/3d-gaussian-splatting/
    • GitHub /graphdeco-inria/gaussian-splatting
  • Related papers
    • /html/2406.18533v1
      On Scaling Up 3D Gaussian Splatting Training

Extended reading

  • /p/680669616
    This article is more detailed and easy to understand
  • /blog/the-rise-of-3d-gaussian-splatting
  • /articles/gaussian-splatting
  • Animatable Gaussian Avatar /heawon-yoon/anim-gaussian
    Use 3D Gaussian to create 3D character animation avatars, including installation steps

video

Collection/playlist?list=PLAGyKNXhhw2l-OlYOvCxyQ2l29rypwIjW

  • 3D Gaussian Splatting for Beginners
  • Model data description Understanding the Gaussian splatting model
  • 3D NeRF (another implementation) and Gaussian Splatting Real World Applications for NeRFs and Gaussian Splatting - Simulation, Real Estate, Cinema, AR, VR!
  • Introduction to 3D NeRF NeRF: Neural Radiance Fields for Beginners
  • 3D NeRF and Gaussian Comparison Novel View Rendering and 3D Reconstruction - NeRFs vs Gaussian Splatting
  • Installation, Training and Rendering in Linux - Setup, Training and Rendering

other

  • Creating 3D Game Models from Video using Photogrammetry /watch?v=bDHJM6nAKtc
    3D reconstruction technology 7 years ago
  • 3D Gaussian Splatting Demo /watch?v=c0VNckM21B0
    After shooting with iPhone XR, the effect demonstration of using 3D Gaussian reconstruction

B station Chinese

  • /video/BV11e411n79b
    3D Gaussian Introduction
  • /video/BV1bJ4m1b7qW/
    Comparison of the effects of 3D Gaussian and the other two reconstruction methods

Installation steps

Install the necessary libraries and dependencies

Ubuntu

apt update
apt install build-essential ninja-build

View the graphics card

(base) root@ubuntu22:~# nvidia-smi
Sun Mar 30 17:21:08 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.78                 Driver Version: 550.78         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id           | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080        Off |   00000000:00:08.0 Off |                  N/A |
| 30%   23C    P8              8W /  320W |      10MiB /  10240MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A       709      G   /usr/lib/xorg/Xorg                              4MiB |
+-----------------------------------------------------------------------------------------+

Cuda

Install Cuda Toolkit

/cuda-toolkit-archive

View cuda version

nvcc -V

Cuda 12.4

/cuda-12-4-1-download-archive

There is a problem with this installation

wget /compute/cuda/12.4.1/local_installers/cuda_12.4.1_550.54.15_linux.run
sudo sh cuda_12.4.1_550.54.15_linux.run

This installation passes

wget /compute/cuda/repos/ubuntu2204/x86_64/
sudo mv  /etc/apt//cuda-repository-pin-600
wget /compute/cuda/12.4.1/local_installers/cuda-repo-ubuntu2204-12-4-local_12.4.1-550.54.15-1_amd64.deb
dpkg -i cuda-repo-ubuntu2204-12-4-local_12.4.1-550.54.15-1_amd64.deb
cp /var/cuda-repo-ubuntu2204-12-4-local/cuda-*- /usr/share/keyrings/
apt update
apt install cuda-toolkit-12-4

Not tried

wget /compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-4

examine

(base) root@ubuntu22:~/Download# /usr/local/cuda/bin/nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Mar_28_02:18:24_PDT_2024
Cuda compilation tools, release 12.4, V12.4.131
Build cuda_12.4.r12.4/compiler.34097967_0

Cuda 12.1

/cuda-12-1-1-download-archive

Method 1: Using run file, there was an error in compilation

# This file has nearly 4.5GB, and you need to increase bandwidth and plan your time.
 wget /compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
 sh cuda_12.1.1_530.30.02_linux.run

Method 2: Install the apt deb method, and the last prompts that the version is inconsistent

wget /compute/cuda/repos/ubuntu2204/x86_64/
sudo mv  /etc/apt//cuda-repository-pin-600
wget /compute/cuda/12.1.1/local_installers/cuda-repo-ubuntu2204-12-1-local_12.1.1-530.30.02-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204-12-1-local_12.1.1-530.30.02-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2204-12-1-local/cuda-*- /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda

Conda

Install Miniconda, Installation Instructions:/milton/p/18023969

Enable conda

eval "$(/home/milton/miniconda3/bin/conda  hook)"

Create a conda environment with python version 3.10.12

conda create --name test001 python=3.10.12
conda activate test001

Pytorch

Visit the Pytorch official website/

Starting from 2.6, the conda mode installation is no longer available, and 2.6 only supports 11.8 and 12.4. If you want to use 12.1, you need to replace it with 2.5.

Cuda 12.6 Install Pytorch 2.6

pip3 install torch torchvision torchaudio --index-url /whl/cu126

Cuda 12.4 Install Pytorch 2.6

pip3 install torch torchvision torchaudio

Cuda 12.1 Install Pytorch 2.5.1

Conda

# CUDA 11.8
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1  pytorch-cuda=11.8 -c pytorch -c nvidia
# CUDA 12.1
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia
# CUDA 12.4
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.4 -c pytorch -c nvidia

Pip

# CUDA 11.8
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url /whl/cu118
# CUDA 12.1
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url /whl/cu121
# CUDA 12.4
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url /whl/cu124

other

pip install plyfile tqdm tensorboard six
pip install opencv-python

Export the project

Export the project warehouse

git clone /graphdeco-inria/gaussian-splatting --recursive

Install the module

#gaussian
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn

Download training materials

In the projectGitHub repositoryFind the Running section on the home page, and you can find this download link

You can find our SfM data sets for Tanks&Temples and Deep Blending here:

/fungraph/3d-gaussian-splatting/datasets/input/tandt_db.zip

Then there is an output directory If you do not provide an output model directory (-m), trained models are written to folders with randomized unique names inside the output directory. At this point, the trained models may be viewed with the real-time viewer (see further below).

Default dataset test

Training: Use the data that comes with the project

python -s [material path]
 # .
 python -s ./data/tandt/truck

You can view the GPU situation during execution

(base) root@ubuntu22:~/WorkPython# nvidia-smi
Sun Mar 30 17:59:38 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.78                 Driver Version: 550.78         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id           | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080        Off |   00000000:00:08.0 Off |                  N/A |
| 61%   69C    P2            308W /  320W |    5499MiB /  10240MiB |     97%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A       709      G   /usr/lib/xorg/Xorg                              4MiB |
|    0   N/A  N/A      7040      C   python                                       5484MiB |
+-----------------------------------------------------------------------------------------+

Rendering:

python -m [training result path]
python  -m <path to trained model> # Compute error metrics on renderings

Result View

After downloading the model file, view it through this website

/tools/gaussian-splatting

Problem handling

CUDA installation failed

(base) root@ubuntu22:~/Download# sudo sh cuda_12.1.1_530.30.02_linux.run
 Installation failed. See log at /var/log/ for details.
(base) root@ubuntu22:~/Download# more /var/log/
(test001) root@ubuntu22:~/Download# more /var/log/
...
Using built-in stream user interface
-> Detected 8 CPUs online; setting concurrency level to 8.
-> Scanning the initramfs with lsinitramfs...
-> Executing: /usr/bin/lsinitramfs   -l /boot/-6.5.0-28-generic
-> The file '/tmp/.X0-lock' exists and appears to contain the process ID '737' of a running X server.
-> You appear to be running an X server.  Installing the NVIDIA driver while X is running is not recommended, as doing so may prevent the
 installer from detecting some potential installation problems, and it may not be possible to start new graphics applications after a new
 driver is installed.  If you choose to continue installation, it is highly recommended that you reboot your computer after installation
to use the newly installed driver. (Answer: Abort installation)
ERROR: Installation has failed.  Please see the file '/var/log/' for details.  You may find suggestions on fixing ins
tallation problems in the README available on the Linux driver download page at .

Stop X Server and then install it

systemctl stop display-manager

we could not find ninja or g++

sudo apt-get update
sudo apt install build-essential
sudo apt-get install ninja-build

No such file or directory: ‘:/usr/local/cuda-11.8/bin/nvcc

Execute the command directly on the current command line

export CUDA_HOME=/usr/local/cuda

install again

pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn