Location>code7788 >text

abc366-cnblog

Popularity:409 ℃/2024-08-11 17:10:09

[E](E - Manhattan Multifocal Ellipse ())

Ideas for solving the problem

This problem seeks to satisfy\(\sum^n_{i=1}(|x-x_i|+|y-y_i|)\leq D\) coordinates of\((x,y)\) number of,Since it is a summation,the reason why\(x,y\) They are independent of each other.

  • In the first step, let's first separately find the number of cells that satisfy\(\sum^n_{i=1}|x-x_i|\leq D\) cap (a poem)\(\sum^n_{i=1}|y-y_i|\leq D\) (used form a nominal expression)\(sum_x\)cap (a poem)\(sum_y\)The two are equivalent.
  • In the second step, the results obtained in the first step are sorted and enumerated\(sum_x\)and then use dichotomies or double pointers to find a satisfying\(sum_y\)The answer is the cumulative total of the number of

For the first step, the array\(x\)Perform the sorting, noting that\(x\)The range is only\([-10^6,10^6]\)\(D \leq 10^6\)So we can start with the\(min\_x-10^6\)Enumeration to\(max\_x+10^6\)enumerate the number of people who meet the\(sum_x\leq D\)(used form a nominal expression)\(sum_x\)I'm going to start by asking you again.\(sum_x\)The latter enumeration is done on the\(sum_x\)Dynamic maintenance is sufficient

coding

#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
using ll = long long;
using pii = pair<int, int>;
using piii = pair<int, pii>;
using pll=pair<ll,ll>;
using plll=pair<ll,pii>;
#define fi first
#define se second
const int INF = 0x3f3f3f3f;

void solve() {
	int n,d;
	cin>>n>>d;
	vector<int> a(n),b(n);
	for(int i=0;i<n;i++){
		cin>>a[i]>>b[i];
	}
	auto get=[&](vector<int>&a){
		vector<int> res;
		sort((),());
		if(()-()>d) return res;//A useless pruning.
		int st=()-d;
		ll sum=0;
		for(int i=0;i<n;i++) sum+=abs(a[i]-st);
		bool tag=false;
		int cnt=0;
		for(int i=st;i<=()+d;i++){
			if(sum<=d) res.push_back(sum);
			if(sum<=d) tag=true;//A useless pruning.
			if(tag&&sum>d) break;//A useless pruning.
			while(cnt<n&&i==a[cnt]) cnt++;
			sum+=cnt-(n-cnt);
		}
		sort((),());
		return res;
	};
	vector<int> xs=get(a),ys=get(b);
	ll ans=0;

	for(int i=0,j=()-1;i<();i++){//dual-pointer
		while(j>=0&&ys[j]+xs[i]>d) j--;
		ans+=j+1;
	}
	cout<<ans<<endl;
}

int main() {
    (nullptr);
    ios::sync_with_stdio(false);
    int _ = 1;
    // cin >> _;
    while (_--) {
        solve();
    }
    return 0;
}

[F](F - Maximum Composition ())

Ideas for solving the problem

We start by fixing the chosen combination, which is necessarily chosen to have a length of\(K\)The next step is to consider the order of the combinations

insofar as\(A_i,B_i,A_{i+1},B_{i+1}\)Assuming that the first\(i\)In the front, the result is\(A_{i+1}*(A_i*x+B_i)+B_{i+1}\)that is\(A_iA_{i+1}*x+A_{i+1}B_i+B_{i+1}\)Assuming that the first\(i+1\)In the front, the result is\(A_iA_{i+1}*x+A_iB_{i+1}+B_i\), if the order of the former is due to the order of the latter, then the former equation is greater than the latter, which reduces to\((A_{i+1}-1)*B_i>(A_i-1)*B_{i+1}\)If you prioritize the pairs of numbers in such a way that it is optimal to choose them from the front to the back, then you can choose the pairs of numbers in such a way that it is optimal to choose

With the order determined, consider picking those pairs of numbers, and we define\(dp[i][j]\)before\(i\)I've got the right number.\(j\)The maximum value when the number of pairs of numbers and optimized to one dimension with a rolling array (similar to 01 backpack), the transfer equation is shown in the code

coding

#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
using ll = long long;
using pii = pair<int, int>;
using piii = pair<int, pii>;
using pll=pair<ll,ll>;
using plll=pair<ll,pii>;
#define fi first
#define se second
const int INF = 0x3f3f3f3f;

void solve() {
	int n,k;
	cin>>n>>k;
	vector<pii> tup(n);
	for(int i=0;i<n;i++){
		auto &[a,b]=tup[i];
		cin>>a>>b;
	}
	sort((),(),[&](pii A,pii B){
		return (-1)*<(-1)*;
	});
	vector<ll> dp(k+1);
	dp[0]=1;
	for(int i=0;i<n;i++){
		for(int j=k-1;j>=0;j--){
			if(dp[j])
				dp[j+1]=max(dp[j+1],dp[j]*tup[i].fi+tup[i].se);
		}
	}
	cout<<dp[k]<<endl;
}

int main() {
    (nullptr);
    ios::sync_with_stdio(false);
    int _ = 1;
    // cin >> _;
    while (_--) {
        solve();
    }
    return 0;
}