OpenVino rapid deployment tutorial
OpenvinoattributableIntelA semi-open source toolkit developed specifically for optimizing and deploying AI inference, primarily for deepReasoning for optimization. This tutorial applies toYolov5-7.0The test platform--Intel Nuc 11th generation i5 processor.
I. Installation of OpenVino
Go to OpenVino official website
/2024/get-started/
Choose your favorite download method, this tutorial uses OpenVino-2022.3.1 version
II. Model conversion
-
Converting .pt to .onnx format via a file that comes with Yolov5
python3 --weights xxxx/ --include onnx --batch_size 1 --opset 10 PS: If the conversion fails, e.g. opset 10 is not supported or onnx version is not supported, please rebuild the yolov5 environment and install the lowest version of the library.
-
Use OpenVino toolchain to convert .onnx to xml, bin models
mo --input_model xxx/ PS: If the openvino environment is installed successfully, you can use the mo command directly in the yolov5 environment.
PS: Please be sure to use the model visualization tool to check if the conversion is correct after the conversion is completed.
III. Rapid deployment using the following code
import as ov
import cv2
import numpy as np
import as op
class ObjectDetector:
def __init__(self, model_xml, model_bin, labels, device="CPU"):
= ()
= .read_model(model_xml, model_bin)
= labels
self.preprocess_model()
self.compiled_model = .compile_model(, device)
self.infer_request = self.compiled_model.create_infer_request()
def preprocess_model(self):
premodel = ()
().tensor().set_element_type(.u8).set_layout(("NHWC")).set_color_format()
().preprocess().convert_element_type(.f32).convert_color().scale([255., 255., 255.])
().model().set_layout(("NCHW"))
(0).tensor().set_element_type(.f32)
= ()
def infer(self, img):
detections = []
img_re, dw, dh = (img, (640, 640))
input_tensor = np.expand_dims(img_re, 0)
self.infer_request.infer({0: input_tensor})
output = self.infer_request.get_output_tensor(0)
detections = self.process_output([0])
return detections
def process_output(self, detections):
boxes = []
class_ids = []
confidences = []
for prediction in detections:
confidence = prediction[4].item()
if confidence >= 0.6:
classes_scores = prediction[5:]
_, _, _, max_indx = (classes_scores)
class_id = max_indx[1]
if (classes_scores[class_id] > .25):
(confidence)
class_ids.append(class_id)
x, y, w, h = prediction[0].item(), prediction[1].item(), prediction[2].item(), prediction[3].item()
xmin = x - (w / 2)
ymin = y - (h / 2)
box = ([xmin, ymin, w, h])
(box)
indexes = (boxes, confidences, 0.5, 0.5)
detections = []
for i in indexes:
j = ()
({"class_index": class_ids[j], "confidence": confidences[j], "box": boxes[j]})
return detections
def resizeimg(self, image, new_shape):
old_size = [:2]
ratio = float(new_shape[-1] / max(old_size))
new_size = tuple([int(x * ratio) for x in old_size])
image = (image, (new_size[1], new_size[0]))
delta_w = new_shape[1] - new_size[1]
delta_h = new_shape[0] - new_size[0]
color = [100, 100, 100]
new_im = (image, 0, delta_h, 0, delta_w, cv2.BORDER_CONSTANT, value=color)
return new_im, delta_w, delta_h
if __name__ == "__main__":
# Example usage:
labels = [
"right",
"warning",
"left",
"people",
"10",
"pullover",
"10off",
"green",
"red"
]
detector = ObjectDetector("/home/nuc/MyCar/yolov5-7.0/", "/home/nuc/MyCar/yolov5-7.0/", labels, "CPU")
cap = (0)
while True:
ret, frame = ()
detections = (frame)
for detection in detections:
classId = detection["class_index"]
confidence = detection["confidence"]
label = labels[classId]
box = detection["box"]
area = box[2] * box[3]
print(f"Detected object: {label}, Confidence: {confidence}, Area: {area}")
()