Location>code7788 >text

Verilog implements 32-bit signed flow multiplier

Popularity:146 ℃/2025-03-28 23:35:46

Verilog implements 32-bit signed flow multiplier

1.4bit multiplication process

1. Unsigned X Unsigned Binary Multiplier

The following is the 4bit multiplier process (2X6)

	0 0 0 0 0 0 1 0     (2)
X	0 0 0 0 0 1 1 0     (6)
    --------------------- 
	0 0 0 0 0 0 0 0     (0)
	0 0 0 0 0 1 0 0     (4)
	0 0 0 0 1 0 0 0     (8)
	0 0 0 0 0 0 0 0     (0)
	0 0 0 0 0 0 0 0     (0)
	0 0 0 0 0 0 0 0     (0)
	0 0 0 0 0 0 0 0     (0)
	0 0 0 0 0 0 0 0     (0)
    ---------------------	
	0 0 0 0 1 1 0 0     (12)
Note: The maximum result bit width of a 4bit multiplier is 8, that is, 4+4. When calculating, the multiplier and the multiplier need to be expanded to 8bit through the sign bit. Of course, for unsigned multiplication, the extension has no effect, but for signed, it is necessary. The designed module is signed and unsigned general registers. It is recommended that unsigned also perform bit width expansion.

2. Signed X signed binary multiplier

The following is the 4bit multiplier flow (-2 X-6)

	1 1 1 1 1 1 1 0     (-2)
 X	1 1 1 1 1 0 1 0     (-6)
    --------------------- 
	0 0 0 0 0 0 0 0		
	1 1 1 1 1 1 0 0		
	0 0 0 0 0 0 0 0		
	1 1 1 1 0 0 0 0		
	1 1 1 0 0 0 0 0     
	1 1 0 0 0 0 0 0     
	1 0 0 0 0 0 0 0     
	0 0 0 0 0 0 0 0     
    ---------------------	
	0 0 0 0 1 1 0 0     (12) 

3. Signed X unsigned binary multiplier

 	1 1 1 1 1 1 1 0     (-2)
 X	0 0 0 0 0 1 1 0     (6)
    --------------------- 
	0 0 0 0 0 0 0 0		
 	1 1 1 1 1 1 0 0		
	1 1 1 1 1 0 0 0		
	0 0 0 0 0 0 0 0		
	0 0 0 0 0 0 0 0     
	0 0 0 0 0 0 0 0     
	0 0 0 0 0 0 0 0     
	0 0 0 0 0 0 0 0     
    ---------------------	
	1 1 1 1 0 1 0 0     (-12)

4. Unsigned X signed binary multiplier

 	0 0 0 0 0 0 1 0     (2)
 X	1 1 1 1 1 0 1 0     (-6)
    --------------------- 
	0 0 0 0 0 0 0 0		
 	0 0 0 0 0 1 0 0		
	0 0 0 0 0 0 0 0		
	0 0 0 1 0 0 0 0		
	0 0 1 0 0 0 0 0     
	0 1 0 0 0 0 0 0     
	1 0 0 0 0 0 0 0     
	0 0 0 0 0 0 0 0     
    ---------------------	
	1 1 1 1 0 1 0 0     (-12)

2. Process simplification

From the above four situations, we can summarize a rule that symbols do not affect the calculation process, but only affect the cutoff position.

​For example, the unsigned X signed binary multiplier is as an example: bin(00000010) = dec(2), but for bin(11111010) treats it as a signed number as dec(-6), and as an unsigned as dec(250), that is, if the result of dec(2)*dec(250) is only taken 8 bits lower, it is bin(11110100) = dec(-12). Then I think that when calculating signed numbers multiplication, I just need to calculate it as an unsigned number, and finally control the cutoff position to calculate the signed calculator.

Then the following will simplify the 16bit multiplication to -1000 X -1200

1. Bit width expansion

dec(-1000) = bin(11111111111111111111110000011000) = dec(4294966296)
dec(-1200) = bin(11111111111111111111101101010000) = dec(4294966096)

2. Multiplier exponential decomposition

dec(4294966096) = 1*2^31 + 1*2^30 + 1*2^29 + 1*2^28 +
 1*2^27 + 1*2^26 + 1*2^25 + 1*2^24 + 1*2^23 + 1*2^22 +
 1*2^21 + 1*2^20 + 1*2^19 + 1*2^18 + 1*2^17 + 1*2^16 +
 1*2^15 + 1*2^14 + 1*2^13 + 1*2^12 + 1*2^11 + 0*2^10 +
 1*2^9 + 1*2^8 + 0*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 +
 0*2^2 + 0*2^1 + 0*2^0
 but:
 dec(4294966296) * dec(4294966096) = dec(4294966296)*2^31 + dec(4294966296)*2^30 +
 dec(4294966296)*2^29 + dec(4294966296)*2^28 + dec(4294966296)*2^27 +
 dec(4294966296)*2^26 + dec(4294966296)*2^25 + dec(4294966296)*2^24 +
 dec(4294966296)*2^23 + dec(4294966296)*2^22 + dec(4294966296)*2^21 +
 dec(4294966296)*2^20 + dec(4294966296)*2^19 + dec(4294966296)*2^18 +
 dec(4294966296)*2^17 + dec(4294966296)*2^16 + dec(4294966296)*2^15 +
 dec(4294966296)*2^14 + dec(4294966296)*2^13 + dec(4294966296)*2^12 +
 dec(4294966296)*2^11 + 0*2^10 + dec(4294966296)*2^9 + dec(4294966296)*2^8 +
 0*2^7 + dec(4294966296)*2^6 + 0*2^5 + dec(4294966296)*2^4 + 0*2^3 +
 0*2^2 + 0*2^1 + 0*2^0

This formula looks a lot of complex, but if you think of the exponent as the left shift operator, then multiplication will be converted into left shift and addition.

3. Pipeline addition

Assumptionsnum = a + b + c + d + e + f + g + h, convert it into pipeline addition

a
a
b
b
c
c
d
d
e
e
f
f
g
g
h
h
dig0
dig0
dig1
dig1
dig2
dig2
dig3
dig3
dig4
dig4
dig5
dig5
dig6
dig6
num
num
Text is not SVG - cannot display

4. Intercept on demand

dec(4294966296) * dec(4294966096) = hex(FFFF76800124F80)
 Among them, the maximum bit width of 16 bits is 32 bits, and the next 32 bits are taken, that is,
 hex(00124F80) = dec(1200000)

A complete multiplication process is considered complete.

accomplish

16-bit signed multiplier code
`timescale 1ns / 1ps
 //////////////////////////////////////////////////////////////////////////////////
 // Company:
 // Engineer:
 //
 // Create Date: 2025/03/28 22:54:41
 // Design Name:
 // Module Name: multiplier_16
 // Project Name:
 // Target Devices:
 // Tool Versions:
 // Description:
 //
 // Dependencies: 16-bit signed multiplier
 //
 // Revision:
 // Revision 0.01 - File Created
 // Additional Comments:
 //
 //////////////////////////////////////////////////////////////////////////////////
 module multipleer_16
 #(
     parameter A_WIDTH = 16,//Bit width of data A
     parameter A_SIGNED = 1,//Is data A signed?
     parameter B_WIDTH = 16,//Bit width of data B
     parameter B_SIGNED = 1 //Is data B signed?
 )
 (
     input clk ,
     input rst,
     input [A_WIDTH-1:0] A,
     input [B_WIDTH-1:0] B,
     output [A_WIDTH + B_WIDTH - 1:0] P
     );
     wire [32-1:0] C;
     wire [32-1:0] D;
     assign C = A_SIGNED?{{32-A_WIDTH{A[A_WIDTH-1]}},A}:{{32-A_WIDTH{1'b0}},A};
     assign D = B_SIGNED?{{32-B_WIDTH{B[B_WIDTH-1]}},B}:{{32-B_WIDTH{1'b0}},B};
 //*************************************************
     genvar i0;
     reg [31:0] sum0 [15:0];
     generate
         for (i0 = 0;i0<=15 ;i0=i0+1 ) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum0[i0] <= 0;
                 end
                 else begin
                     case({D[2*i0+1],D[2*i0]})
                         2'b00:begin
                             sum0[i0] <= 0 << (2*i0);
                         end
                         2'b01:begin
                             sum0[i0] <= (0 + C) << (2*i0);
                         end
                         2'b10:begin
                             sum0[i0] <= ({C[30:0],1'b0} + 0) << (2*i0);
                         end
                         2'b11:begin
                             sum0[i0] <= ({C[30:0],1'b0} + C) << (2*i0);
                         end
                     endcase
                 end
             end
         end
     endgenerate
     genvar i1;
     reg [31:0] sum1 [7:0];
     generate
         for (i1 = 0;i1<=7;i1=i1+1) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum1[i1] <= 0;
                 end
                 else begin
                     sum1[i1] <= sum0[2*i1] + sum0[2*i1+1];
                 end
             end
         end
     endgenerate
     genvar i2;
     reg [31:0] sum2 [3:0];
     generate
         for (i2 = 0;i2<=3 ;i2=i2+1 ) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum2[i2] <= 0;
                 end
                 else begin
                     sum2[i2] <= sum1[2*i2] + sum1[2*i2+1];
                 end
             end
         end
     endgenerate
     genvar i3;
     reg [31:0] sum3 [1:0];
     generate
         for (i3 = 0;i3<=1 ;i3=i3+1 ) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum3[i3] <= 0;
                 end
                 else begin
                     sum3[i3] <= sum2[2*i3] + sum2[2*i3+1];
                 end
             end
         end
     endgenerate
     reg [31:0] sum4;
     always @(posedge clk) begin
         if(rst)begin
             sum4 <= 0;
         end
         else begin
             sum4 <= sum3[0] + sum3[1];
         end
     end
     assign P = sum4;
 endmodule
32-bit signed multiplier code
`timescale 1ns / 1ps
 //////////////////////////////////////////////////////////////////////////////////
 // Company:
 // Engineer:
 //
 // Create Date: 2024/09/11 22:21:12
 // Design Name:
 // Module Name: multiplier_pp
 // Project Name:
 // Target Devices:
 // Tool Versions:
 // Description:
 //
 // Dependencies:
 //
 // Revision:
 // Revision 0.01 - File Created
 // Additional Comments:
 //
 //////////////////////////////////////////////////////////////////////////////////
 module multipler
 #(
     parameter A_WIDTH = 32,//Bit width of data A
     parameter A_SIGNED = 1,//Is data A signed?
     parameter B_WIDTH = 32,//Bit width of data B
     parameter B_SIGNED = 1 //Is data B signed?
 )
 (
     input clk ,
     input rst,
     input [A_WIDTH-1:0] A,
     input [B_WIDTH-1:0] B,
     output [A_WIDTH + B_WIDTH - 1:0] P
     );
     wire [64-1:0] C;
     wire [64-1:0] D;
     assign C = A_SIGNED?{{64-A_WIDTH{A[A_WIDTH-1]}},A}:{{64-A_WIDTH{1'b0}},A};
     assign D = B_SIGNED?{{64-B_WIDTH{B[B_WIDTH-1]}},B}:{{64-B_WIDTH{1'b0}},B};
 //*************************************************
     genvar i0;
     reg [63:0] sum0 [31:0];
     generate
         for (i0 = 0;i0<=31 ;i0=i0+1 ) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum0[i0] <= 0;
                 end
                 else begin
                     case({D[2*i0+1],D[2*i0]})
                         2'b00:begin
                             sum0[i0] <= 0 << (2*i0);
                         end
                         2'b01:begin
                             sum0[i0] <= (0 + C) << (2*i0);
                         end
                         2'b10:begin
                             sum0[i0] <= ({C[62:0],1'b0} + 0) << (2*i0);
                         end
                         2'b11:begin
                             sum0[i0] <= ({C[62:0],1'b0} + C) << (2*i0);
                         end
                     endcase
                 end
             end
         end
     endgenerate
     genvar i1;
     reg [63:0] sum1 [15:0];
     generate
         for (i1 = 0;i1<=15;i1=i1+1) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum1[i1] <= 0;
                 end
                 else begin
                     sum1[i1] <= sum0[2*i1] + sum0[2*i1+1];
                 end
             end
         end
     endgenerate
     genvar i2;
     reg [63:0] sum2 [7:0];
     generate
         for (i2 = 0;i2<=7;i2=i2+1 ) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum2[i2] <= 0;
                 end
                 else begin
                     sum2[i2] <= sum1[2*i2] + sum1[2*i2+1];
                 end
             end
         end
     endgenerate
     genvar i3;
     reg [63:0] sum3 [3:0];
     generate
         for (i3 = 0;i3<=3 ;i3=i3+1 ) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum3[i3] <= 0;
                 end
                 else begin
                     sum3[i3] <= sum2[2*i3] + sum2[2*i3+1];
                 end
             end
         end
     endgenerate
     genvar i4;
     reg [63:0] sum4 [1:0];
     generate
         for (i4 = 0;i4<=1 ;i4=i4+1 ) begin
             always @(posedge clk) begin
                 if(rst)begin
                     sum4[i4] <= 0;
                 end
                 else begin
                     sum4[i4] <= sum3[2*i4] + sum3[2*i4+1];
                 end
             end
         end
     endgenerate
     reg [63:0] sum5;
     always @(posedge clk) begin
         if(rst)begin
             sum5 <= 0;
         end
         else begin
             sum5 <= sum4[0] + sum4[1];
         end
     end
     assign P = sum5;
 endmodule