1. Project background and value
In modern office scenarios, meeting minutes and summary generation are important links to improve work efficiency. Traditional manual recording methods have problems such as inefficiency and easy omission, while AI-based solutions can transcribe the content of the conference in real time and generate structured summary. This tutorial will guide developers to use the two major tools of Vosk (voice recognition) and Transformers (natural language processing) in the Python ecosystem to build a offline real-time conference transcription and summary system. Through this project, you will learn:
- Configuration and optimization methods for offline voice recognition;
- Fine-tuning technology for pre-trained language models;
- Real-time audio stream processing architecture;
- Development ideas for multimodal interactive systems.
2. Technology stack analysis
Components | Functional positioning | Core technical characteristics |
---|---|---|
Vosk | Voice recognition engine | Based on Kaldi optimization, it supports offline real-time recognition, and the accuracy of Chinese recognition can reach 95%+ |
Transformers | Natural Language Processing Framework | Provide pre-trained models such as BART, and support NLP tasks such as summary generation and text classification. |
PyDub | Audio processing tools | Implement preprocessing functions such as audio format conversion, noise reduction, gain adjustment, etc. |
Flask | Web Service Framework | Quickly build real-time data interface and support WebSocket communication |
React | Front-end framework | Build a responsive user interface to realize real-time data visualization |
III. System architecture design
4. Detailed implementation steps
4.1 Environment configuration
# Create a virtual environment
python -m venv venv
source venv/bin/activate
# Install core dependencies
pip install vosk transformers torch pydub flask-socketio
# Download the pretrained model
wget /vosk/models/vosk-model-cn-0.
unzip vosk-model-cn-0. -d model/vosk
wget /facebook/bart-large-cnn/resolve/main/
tar -xzvf -C model/transformers
4.2 Implementation of voice recognition module
# audio_processor.py
import vosk
import pyaudio
from pydub import AudioSegment
class AudioRecognizer:
def __init__(self, model_path="model/vosk/vosk-model-cn-0.22"):
= (model_path)
= (, 16000)
def process_chunk(self, chunk):
if .accept_waveform(chunk):
Return ()
else:
return .partial_result()
class AudioStream:
def __init__(self):
= ()
= (
format=pyaudio.paInt16,
channels=1,
rate=16000,
input=True,
frames_per_buffer=8000
)
def read_stream(self):
While True:
data = (4096)
yield data
#User Example
recognizer = AudioRecognizer()
audio_stream = AudioStream()
for chunk in audio_stream.read_stream():
text = recognizer.process_chunk(chunk)
if text:
print(f"Result: {text}")
4.3 BART abstract model fine-tuning
# bart_finetune.py
from transformers import BartTokenizer, BartForConditionalGeneration, Trainer, TrainingArguments
import torch
from datasets import load_dataset
# Load the pretrained model
model_name = "facebook/bart-large-cnn"
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
# Prepare the meeting dataset
dataset = load_dataset("csv", data_files="meeting_data.csv")
def preprocess(examples):
inputs = tokenizer(
examples["text"],
max_length=1024,
truncation=True,
padding="max_length"
)
outputs = tokenizer(
examples["summary"],
max_length=256,
truncation=True,
padding="max_length"
)
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"labels": outputs["input_ids"]
}
tokenized_dataset = (preprocess, batched=True)
# Define training parameters
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=500,
)
# Start fine adjustment
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
)
()
4.4 Real-time system integration
#
from flask import Flask, render_template
from flask_socketio import SocketIO, emit
import threading
app = Flask(__name__)
socketio = SocketIO(app)
# Initialize the recognizer
recognizer = AudioRecognizer()
audio_stream = AudioStream()
# Real-time processing of threads
def audio_processing():
meeting_text = []
for chunk in audio_stream.read_stream():
text = recognizer.process_chunk(chunk)
if text:
meeting_text.append(text)
# Trigger summary generation every 30 seconds
if len(meeting_text) % 15 == 0:
summary = generate_summary(" ".join(meeting_text))
("update_summary", {"summary": summary})
# Start the thread
(target=audio_processing, daemon=True).start()
@('/')
def index():
return render_template('')
if __name__ == '__main__':
(app, debug=True)
4.5 Web front-end implementation
<!-- templates/ -->
<!DOCTYPE html>
<html>
<head>
<title>Conference Summary System</title>
<script src="/ajax/libs//4.0.1/"></script>
</head>
<body>
<div style="display: flex; gap: 20px">
<div style="flex: 1">
<h2>Real-time transcription</h2>
<div style="height: 400px; overflow-y: auto; border: 1px solid #ccc"></div>
</div>
<div style="flex: 1">
<h2>Conference Summary</h2>
<div style="height: 400px; overflow-y: auto; border: 1px solid #ccc"></div>
</div>
</div>
<script>
const socket = io();
('update_summary', (data) => {
('summary').innerHTML = ;
});
</script>
</body>
</html>
V. Performance optimization strategy
- Audio preprocessing optimization:
def preprocess_audio(file_path):
audio = AudioSegment.from_wav(file_path)
# Noise reduction processing
audio = audio.low_pass_filter(3000)
# Standardized volume
audio = (headroom=10)
return audio.set_frame_rate(16000)
2.Model reasoning acceleration:
# Use ONNX Runtime to speed up reasoning
import onnxruntime as ort
def convert_to_onnx(model_path):
# You need to install transformers[onnx] first
pipeline = pipeline("summarization", model=model_path)
pipeline.save_pretrained("onnx_model")
# Load the optimized model
ort_session = ("onnx_model/")
3.Streaming optimization:
# Use double buffered queues
from collections import deque
class AudioBuffer:
def __init__(self):
= deque(maxlen=5)
def add_chunk(self, chunk):
(chunk)
def get_full_buffer(self):
return b"".join()
VI. Deployment Plan
- Local deployment:
# Install system-level dependencies
sudo apt-get install portaudio19-dev
# Use systemd to manage services
sudo nano /etc/systemd/system/meeting_summary.service
2.Cloud native deployment:
# Kubernetes deployment configuration example
apiVersion: apps/v1
kind: Deployment
metadata:
name: meeting-summary-app
spec:
replicas: 2
selector:
matchLabels:
app: meeting-summary
template:
metadata:
labels:
app: meeting-summary
spec:
containers:
- name: app
image: your_docker_image:latest
Ports:
- containerPort: 5000
resources:
limits:
/gpu: 1
7. Expansion direction
- Multimodal fusion:
- Integrated OpenCV to achieve lip recognition assistance
- Combined with action recognition to analyze spokesperson emotions
2.Knowledge graph integration:
from transformers import AutoModelForQuestionAnswering
# Build a domain knowledge graph
knowledge_graph = {
"Technical Architecture": ["Microservice", "Serverless", "Containerization"],
"Project Management": ["Agile Development", "Kanban Method", "Scrum"]
}
# Implement context-aware summary
def contextual_summary(text):
model = AutoModelForQuestionAnswering.from_pretrained("bert-base-chinese")
# Add knowledge graph query logic
return enhanced_summary
3.Personalized summary:
# Use Sentence-BERT to calculate text similarity
from sentence_transformers import SentenceTransformer
def personalized_summary(user_profile, meeting_text):
model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
embeddings = (meeting_text)
# Select relevant paragraphs based on user portrait
return custom_summary
8. Summary
This tutorial fully presents the entire process from environment configuration to system deployment. Developers can adjust the following parameters according to actual needs:
- Speech recognition model: supports switching to different language models;
- Abstract Generative Model: It can be replaced with T5, PEGASUS and other models;
- Front-end framework: can be replaced with Vue/Angular and other frameworks;
- Deployment plan: Support Docker/Kubernetes cluster deployment.
Through the practice of this project, developers will have an in-depth understanding of the integration methods of voice technology and NLP models and master the core skills of building intelligent conference systems. It is recommended to iterate from the basic functions and gradually add advanced functions such as personalization and multimodality.